首页> 外文OA文献 >Discriminatively Trained And-Or Graph Models for Object Shape Detection
【2h】

Discriminatively Trained And-Or Graph Models for Object Shape Detection

机译:用于物体形状检测的特定训练的和/或图模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we investigate a novel reconfigurable part-based model, namelyAnd-Or graph model, to recognize object shapes in images. Our proposed modelconsists of four layers: leaf-nodes at the bottom are local classifiers fordetecting contour fragments; or-nodes above the leaf-nodes function as theswitches to activate their child leaf-nodes, making the model reconfigurableduring inference; and-nodes in a higher layer capture holistic shapedeformations; one root-node on the top, which is also an or-node, activates oneof its child and-nodes to deal with large global variations (e.g. differentposes and views). We propose a novel structural optimization algorithm todiscriminatively train the And-Or model from weakly annotated data. Thisalgorithm iteratively determines the model structures (e.g. the nodes and theirlayouts) along with the parameter learning. On several challenging datasets,our model demonstrates the effectiveness to perform robust shape-based objectdetection against background clutter and outperforms the other state-of-the-artapproaches. We also release a new shape database with annotations, whichincludes more than 1500 challenging shape instances, for recognition anddetection.
机译:在本文中,我们研究了一种新颖的基于零件的可重配置模型(即“或-或”图模型),以识别图像中的对象形状。我们提出的模型由四层组成:底部的叶节点是用于检测轮廓片段的局部分类器;叶节点上方的or节点用作激活其子叶节点的开关,从而在推理过程中可重新配置模型;较高层中的节点捕获整体形状变形;顶部的一个根节点(也就是or节点)激活其子节点和节点之一以处理较大的全局变化(例如,differentpose和view)。我们提出了一种新颖的结构优化算法,用于从弱注释数据中区分训练And-Or模型。该算法迭代地确定模型结构(例如节点及其布局)以及参数学习。在几个具有挑战性的数据集上,我们的模型证明了针对背景杂波执行鲁棒的基于形状的对象检测的有效性,并且优于其他最新方法。我们还发布了带有注释的新形状数据库,其中包括1500多个具有挑战性的形状实例,用于识别和检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号